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Electronic Collisions Drive a Multitude of Common Physical 
Devices and Chemical Changes

High Intensity Plasma 
Arc Lamp (OSRAM-
Sylvania)

 

Plasma-etched Gate 
0.12 microns wide, 
(Bell Labs --Lucent 
Technologies)

Electronic collisions are 
uniquely effective in trans-
fering energy to and from 
the electronic degrees of fre-
dom of the target atom or 
molecule. That is the funda-
mental reason that new 
developments in modern 
fluorescent lighting and 
plasma displays are distin-
guished by their energy effi-
ciency.

The molecules used to etch semiconductor 
materials do not react with silicon surfaces 
unless they are subjected to electronic colli-
sions in the low-temperature, high-density 
plasmas used in plasma etching and plasma 
enhanced chemical vapor deposition.

Plasma Flat Panel 
Display (Fujitsu)



Example: Plasma vapor deposition and Plasma Etching

No chemistry without electrons from plasma discharge

•Polycrystalline silicon and silicon dioxide etching: Cl2, Br2, HBr, O2, N2 , 
BCl3, HCl, CF4, CHF3, C2F6, C3F8, C4F8, NF3 

•Silicon deposition SiH4, N2O, Ar, TEOS[C2H4O)4] 
•Metal deposition: Cu, Al, Ti, Ba, W, Sr



ElectronElectron--Driven Chemistry Driven Chemistry 
Associated with Ionizing Associated with Ionizing 

RadiationRadiation

Low energy electrons with 
energies significantly below the 
ionization energies of DNA 
molecules can initiate single and 
double strand-breaks by 
attaching to components of DNA 
molecules or the water around 
them and driving bond 
dissociation.

Most energy deposited in cells by 
ionizing radiation is channeled into 
secondary electrons between 1eV and 
20eV (Research group of L. Sanche)

Cascades of secondary electrons 
from ionizing radiation

Secondary electron cascades in mixed 
radioactive/ chemical waste drive 
much of the chemistry that 
determines how those materials age, 
change, and interact with the natural 
environment.
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•  Low energy electrons ( 5 - 100 eV )
•  DEA processes important

Secondary electrons play a pivotal role in 
radiation damage

• Dissociative attachment and 
resonant processes occur 
primarily for electron energies 
below 20 eV

• The energy distribution of 
secondary electrons 
emphasizes those processes

Figure from Thom Orlando, Ga Tech



Dipole Selection rules!
NO singlet to triplet excitation

Electron Impact Processes 

•  Electronic excitation ( Any symmetry 
and singlet to singlet and singlet to triplet)

•  Electron impact dissociation

•  Dissociative attachment

•  Electron impact ionization

Contrast photoexcitation and photoionization
•

•  
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Nuclear Dynamics - Resonant and Non-Resonant Collisions 
 
 
 
• Electron-driven chemistry hinges on the mechanisms by which electronic energy is transferred 

into nuclear motion to produce reactive species by excitation and/or fragmentation 
 
 
Non-resonant collisions - electronic excitation 
• me/M ~ 10-3  ⇒⇒⇒⇒  disparate collisional time scales ⇒⇒⇒⇒  impulsive electronic excitation followed 

by nuclear fragmentation - electron dynamics and nuclear dynamics decouple 
 
Resonant collisions 
• electron collision times commensurate with a molecular vibrational period 
• electron collisions drive vibrational excitation, dissociative attachment, dissociative 

recombination 
• formal resonance theory - multidimensional nuclear motion in polyatomics can lead to new 

effects 
 



Ab Initio Electron-Molecule Scattering
The problem: From first principles, solve the 

scattering problem including the nuclear dynamics, 
predict the cross sections and show how they display 

the underlying dynamics of the collision.

• Breaking up the problem into two parts:
A. Electron scattering for fixed nuclei: Calculate the position and

lifetime of the shape or Feshbach resonances 
B. Nuclear dynamics during the resonant collision:  Calculate the 

quantum molecular dynamics leading to vibrational excitation 
or dissociative attachment



 

 

 
 
 
Computational Electron-Molecule Scattering – the fixed-nuclei electronic problem 
 
 

• At the low collision energies of interest to EDC, incident electron and target electrons are 
indistinguishable – electronic structure and electron dynamics are inseparable. 

 
• The key to a successful approach is the interface between electronic structure and 

electron dynamics. 
 
• Virtually all successful modern approaches are variational. 
 
•  Our approach is based on the complex Kohn variational method – a Hamiltonian –

based, anomaly-free approach that allows us to fully exploit the rich infrastructure of 
bound-state quantum chemistry 

 



Complex Kohn Variational Method
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Fixed Nuclei Electron-Scattering Cross sections in
2A1 symmetry for varying geometries

Resonance feature gives a position and width: A complex energy for the resonance 
 which can be understood in the simplest interpretation viaEres R( ) Er iΓ 2⁄–=
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ER and ΓΓΓΓ are determined from the eigenphase sums in 
the Complex Kohn calculation near the resonance

E.g. at equilibrium geometry Γ = 0.005819eV



The Nuclear Dynamics: Formulation of the problem

•Partition the total wave function into resonant and non-resonant compo-
nents

•For a single, isolated resonance, use Born-Oppenheimer approximation for 
both resonance and nonresonant background

•The T-matrix (scattering amplitude) for vibrational excitation (or dissocia-
tive attachment) is given by the nuclear wave equation

A series of approximations converts this essentially exact equation into the 
“Boomerang” or “local complex potential” approximation
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Local Complex Potential or “Boomerang” Approximation

Time-independent formulation:

Hamiltonian for nuclear motion of anion with local complex potential

Scattering amplitude and cross section:
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Local Complex Potential or “Boomerang” model for Resonant 
Vibrational Excitation in 1D (diatomics)

Time-dependent formulation 

with  
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Local Complex Potential Model W(R) = ER(r,R,γγγγ)-i ΓΓΓΓ(r,R,γγγγ)
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An Electron- CO2  Primer 
 

• CO2  is linear in equilibrium geometry RCO = 2.1944 a0 

• At the equilibrium geometry of CO2, CO2 - is an unbound 2ΠΠΠΠu resonance state 
(~3.8 eV above CO2) 

 
• The resonance state is doubly degenerate in linear geometry, but the degeneracy 

is lifted upon bending (Renner-Teller coupled states, 2A1 and 2B1) 
 
• A low-energy enhancement in elastic scattering comes from a CO2 - virtual state 

(confirmed by Morgan in 1998) 
 
• CO2 - is bound in linear geometry for CO bond distances greater than ~2.5 a0 
 
• CO2 - is bound for RCO = equilibrium value when it is bent by ~25 degrees 



Vibrational states of CO2 -- Near degeneracy of νstretch ~2νbend
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Recent 
Experi-
ments -- 

M. 
Allan 
2002



Complex Potential Surfaces for 2A1 and 2B1 resonance states

B1 Resonance Ion surface

3.8
4

4.2
4.4

4.6
4.8

5
5.2

5.4
5.6

2 C-O distance (bohr)

-40 -30 -20 -10 0 10 20 30 40

bend angle

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

V(hartree)

A1 Resonance Width

3.8
4

4.2
4.4

4.6
4.8

5
5.2

5.4
5.6

2 C-O distance (bohr)

-40 -30 -20 -10 0 10 20 30 40

bend angle

0
0.02
0.04
0.06
0.08

0.1
0.12
0.14
0.16
0.18

V(hartree)

B1 Resonance Width

3.8
4

4.2
4.4

4.6
4.8

5
5.2

5.4
5.6

2 C-O distance (bohr)

-40 -30 -20 -10 0 10 20 30 40

bend angle

0

0.05

0.1

0.15

0.2

0.25

V(hartree)

A1 Resonance Ion surface

3.8
4

4.2
4.4

4.6
4.8

5
5.2

5.4
5.6

2 C-O distance (bohr)

-40 -30 -20 -10 0 10 20 30 40

bend angle

0

0.05

0.1

0.15

0.2

0.25

0.3

V(hartree) EresEres

ΓΓ

2A1
2B1



Multiple Resonances and Renner-Teller Coupling
Upon bending the 2Πu state splits into two resonances, 2A1 and 2B1 . 

•The Born Oppenheimer approximation breaks down and these two states 
are coupled by an effect first characterized by Renner and Teller in 1934.

Degenerate bending modes can combine to give an angular momentum 
around the figure axis

Nuclear angular momentum  and electronic orbital angular momentum 

 give total angular momentum around the molecular axis  

resulting in “Renner-Teller” coupling proportional to 

K

L Jz Kz Lz+=

JzLz ρ2⁄

Z

Normal Coordinates for CO2

R = CO bond length
Θ= bend angle of CO from linear

s = 2R cos(Θ) -Symmetric Stretch

ρ = R2sin2(Θ)/(1+mC/(2mO))2 - bend

Degenerate Bending Modes



Multiple Resonance 
“Boomerang” 
approximation

Ground State Surface
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Some of what we have learned about electron-CO2 collisions

•The resonance structure is an intrinsically polyatomic effect -- 1D models 
cannot account for it. The physical vibrational states of CO2 are Fermi 
polyads that mix the bending and symmetric stretching modes.

•Motion on the A1 surface alone cannot account for the resonance interfer-
ence (“Boomerang”) structure in the cross sections.

•Renner-Teller coupling of 2A1 and 2B1 resonance states is necessary to 
describe the nuclear dynamics during resonant collisions.



A primer on the electron-driven chemistry of water

• The ground state configuration of water is 
! 1a1

22a1
21b2

23a1
21b1

2  1A1

• Electron-driven chemistry through both dissociative
excitation and dissociative attachment

−− ++→→+ eHOHOHeOH *
22 )(

−− +→+ HOHeOH 2

HOHeOH +→+ −−
2

22 HOeOH +→+ −−

Dissociative
Attachment

Electron impact 
dissociation



Simple molecular orbital picture of the 
dissociation processes

• Dissociative excitation proceeds by excitation of low-
lying dissociative electronic states, e.g, those observed in 
EELS spectra:
! 1a1

22a1
21b2

23a1
21b1

14a1
1 1,3 B1

! 1a1
22a1

21b2
23a1

11b1
24a1

1 1,3A1

• Dissociative attachment of H2O proceeds through
Feshbach resonances
! 1a1

22a1
21b2

23a1
21b1

14a1
2 2B1 (~ 6.5 eV)

! 1a1
22a1

21b2
23a1

11b1
24a1

2 2A1   (~ 9 eV)
! 1a1

22a1
21b2

13a1
21b1

24a1
2 2B2   (~ 12 eV)



H- production is primarily through the 2B1 Resonance

productionOH −

productionH −

productionO−

218105.6 cm−×≈

219105.1 cm−×≈

219102.1 cm−×≈

eV5.6

C. E. Melton, Journal of 
Chemical Physics, 57, 
pp.4218-25, (1972).



A Complete ab initio Treatment of Polyatomic 
Dissociative Attachment: 2B1 Resonance

1. Electron scattering: Calculate the energy and width of 
the resonance for fixed nuclei 
! Complex Kohn calculation of fixed-nuclei electron scattering 

cross sections – produce 
! CI calculations -- produce 

2. Fitting of complete resonance potential surface 
including the electronically bound (product) regions

3. Nuclear dynamics in the local complex potential model 
on the anion surface
! Multiconfiguration Time-Dependent Hartree (MCTDH)
! Flux correlation function calculation of DA cross sections
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Configuration Interaction calculation for real part 
of the 2B1 (2A’’) resonance surface

• Real part of resonance energy, 
ER(r,R,γ), nearly parallels the  
“parent” 3B1 state

• When the resonance becomes 
bound, the CI calculation of 
ER(r,R,γ) must dissociate 
properly

• Dominant configuration is

1a1
22a1

21b2
23a1

21b1
14a1

2

• A robust basis set is 
necessary: au-cc-pvTZ

CI (898,075 configurations):

• Singles and doubles 
excitation from the CAS 
reference space 

(1b2, 3a1, 1b1, 4a1, 5a1, 2b2)7

• 4a1 is the “resonance” 
orbital, 

• 5a1 is an important 
correlation orbital, 

• 2b2 for the correct 
dissociation



Entire 2B1 (2A’’) potential surface is fit with 
combination analytic fit and 3-D spline.
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LBNL-AMO 22

Hamiltonian for Nuclear 
Motion

• For J = 0 the wave function is a function of only internal 
coordinates 

• For arbitrary J:
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Solving the multidimensional Time-Dependent
Schrödinger Equation

• Multi-configuration time-dependent Hartree (MCTDH) method in 
collaboration with Prof. H. Dieter-Meyer, University of Heidelberg

• Start with a time-independent orthonormal product basis  

• The MCTDH wave function is a time-dependent linear 
combination of configurations

• The time-dependent single-particle functions are represented 
as

• Derive equations of motion for both the coefficients            
and the single-particle functions
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H- production from the ground state of H2O



H- from single excitation of symmetric stretch
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Cross Sections for OH vibrational states compared with 
experiment

D. S. Belic, M. Landau and R. I. Hall, Journal of 
Physics B 14, pp.175-90 (1981)

Total
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Cross Sections compared with experiment – experiment 
shifted +0.34eV to match peak of total cross section
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Conclusions and Open Questions

• It is now possible to treat
dissociative attachment to a
triatomic in full dimensionality 
from first principles. 

• Dynamics of the 2B1 (2A’’)
resonance leads almost exclusively 
to H - +OH 

• An ab initio treatment reproduces 
the cross sections for producing 
OH in excited vibrational states to 
within a factor of 2

• Interesting energy dependence is 
predicted for cross sections from 
H2O excited in symmetric stretch

• The dynamics of the other two 
resonances (2A1 and 2B2) remains  
unknown.

• Is there production of O - from 
Renner-Teller or other 
nonadiabatic coupling between 
resonances?  Are other 
nonadiabatic couplings 
important?

• Rotational excitation of OH still 
difficult to compute in these 
calculations (long-range charge 
dipole interaction).
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The e−-NO Example: Overlapping Low-Energy
Resonances

• e−-NO scattering below 2 eV is dominated by shape resonances

• NO has an open-shell (2π) ground-state

• By analogy with O2, one expects three low-lying (2π2) negative ion
states - 3Σ−, 1∆ and 1Σ+

• e−-NO presents significant challenges to contemporary scattering theory

? Careful balance of correlation effects in N and (N+1)-electron systems
requires elaborate wave functions

? Quantitative treatment of scattering at low energies requires non-local
treatment beyond the Boomerang model



2

NO/NO− Potential Curves and Widths



3

Electron-NO Vibrational Cross Sections
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NO Neutral and Anion Potential Curves and Vibrational
Levels
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Electron-NO Cross Sections: Theory and Experiment
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Conclusions

• ab initio results confirm that the prominent features in the elastic and
vibrational excitation cross sections arise from 3Σ− and 1∆ negative ion
states.

• The lowest energy peaks observed are due to the 3Σ− state and appear
at the same energy in different exit channels.

• The 3Σ− peaks are overlapped by a broader series of 1∆ peaks at higher
energies which shift in energy as the exit channel quantum number
changes.

• The third 1Σ+ resonance, which contributes to the elastic background
cross section, is too broad to display any boomerang structure.
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Beyond the Local Boomerang Model

• The vibrational levels of the 3Σ− anion are energetically close to those
of the neutral target, which invalidates several key assumptions used in
deriving the local complex potential model.

• Non-local effects, beyond the boomerang model, may be critical in
explaining the suppression of resonance peaks that occurs in the higher
excitation cross sections.
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